

Cancer Incidence among People with intellectual Disabilities in The Netherlands

A population-based cohort study

Maarten Cuypers, PhD

Epidemiologist Radboud university medical center, Nijmegen, The Netherlands Department of Primary and Community Care Intellectual Disability and Health

COI

- No disclosures
- Funding from Dutch Ministry of Health (VWS) and The Netherlands
 Organisation for Health Research and Development (ZonMw)

Outline

WHAT DO WE ALREADY KNOW?

WHAT DID WE DO?

OUR FINDINGS

INTERPRETATION AND DISCUSSION

Why of interest?

Genetics

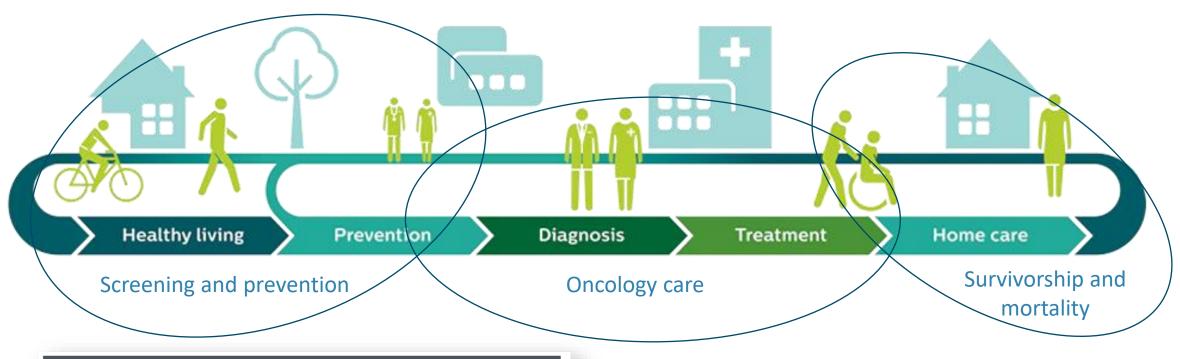
Potential causal link between syndrome and tumor development

Lifestyle

Less aware of health risks, less prevention

Health(care) disparities

Communication
Health skills and literacy
Diagnostic overshadowing


Cascading problems

Challenges throughout cancer continuum

(early) detection

- Low participation and barriers in population screening
 - Consistent findings across Europe, North America, Australia, and Asia
- Diagnosis at more advanced stages

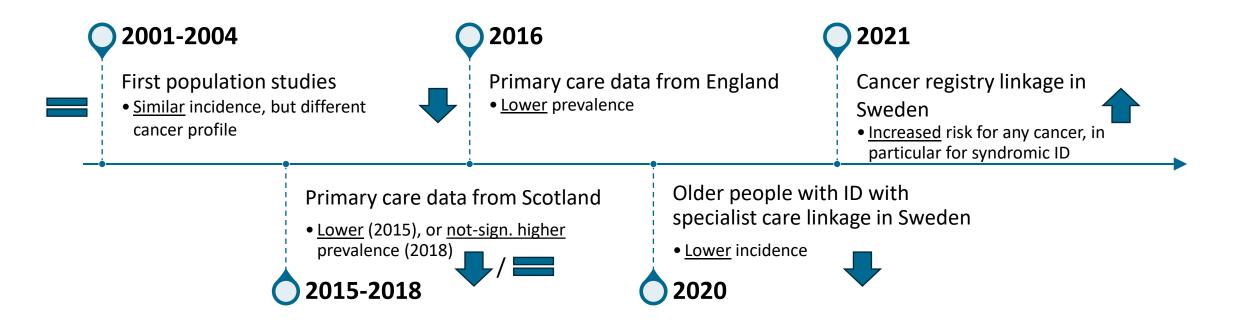
BMJ Open Cancer in deceased adults with intellectual disabilities: English population-based study using linked data from three sources

Pauline Heslop , Adam Cook, Brian Sullivan, Rachel Calkin, Johanna Pollard, Victoria Byrne

Radboudumc

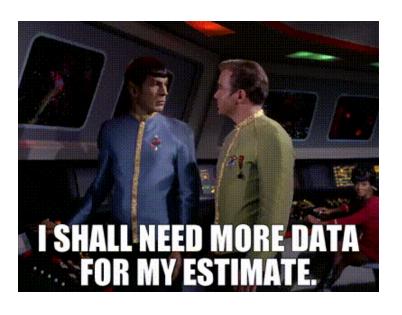
Oncology care and mortality

- Based on routine data from The Netherlands, and a literature review:
 - Fewer people with ID receive treatment at oncology department than expected
 - Treatments get adjusted without evidence or reasoning as to why
 - More people with ID die due to cancer than expected



Brief overview of literature

Since 2000


Patja, 2001; Sullivan, 2004; Carey, 2016; Cooper, 2015 and 2018; Satge, 2020; Liu, 2021

Cancer incidence

- Literature is inconclusive
 - Depends on which groups are studied and compared
- Genetic subgroups can have specific risks
 - Down's syndrome lower risk for solid tumors, increased leukemia risk
- Different age profile
 - Between 5 and 12 years younger at diagnosis
- Different cancer types and stage at diagnosis

- Single national system for chronic care
- Single healthcare system with statutory health insurance
- Access to hospital care same for everyone
- National statistics office serves as hub for population-based linkage

ID definition

- Users of ID-specific long-term care services or social benefits
- No information on aetiology
- But, a formal diagnosis of ID is mandatory to access any of the services
- Service level indicative for ID severity
 - Stratify by residential status

Data sources

Population registry to generate cohort (N=948,056)

Chronic care and welfare databases to identify persons with ID (N=187,149)

New cancer diagnoses in national cancer registry (2015-2020) (N=50,257)

Radboudumc

Findings – All cancers by ICD-10 chapter

Lip, oral cavity, and pharynx (C00-C14)

Digestive organs (C15-C26)

Respiratory and intrathoracic (C30-C39)

Bone and articular cartilage (C40-C41)

Melanoma and other malignant skin (C43-C44)

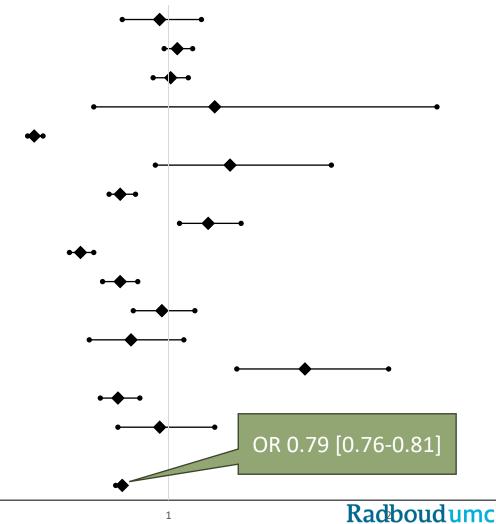
Mesothelial and soft tissue (C45-C49)

Breast (C50)

Female genital (C51-C58)

Male genital (C60-C63)

Urinary tract (C64-C68)


Eye, brain and other CNS (C69-C72)

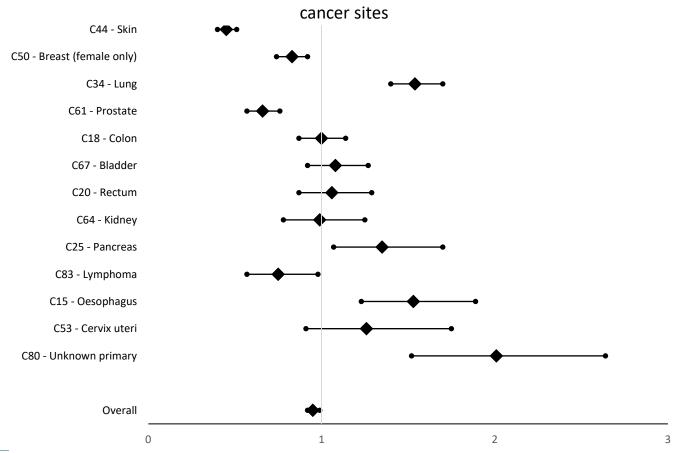
Thyroid and other endocrine (C73-C75)

III-defined and unspecified (C76-C80)

Lymphoid, and haematopoietic (C81- C96)

Uncertain of unknown behavior (D37- D48)

Overall

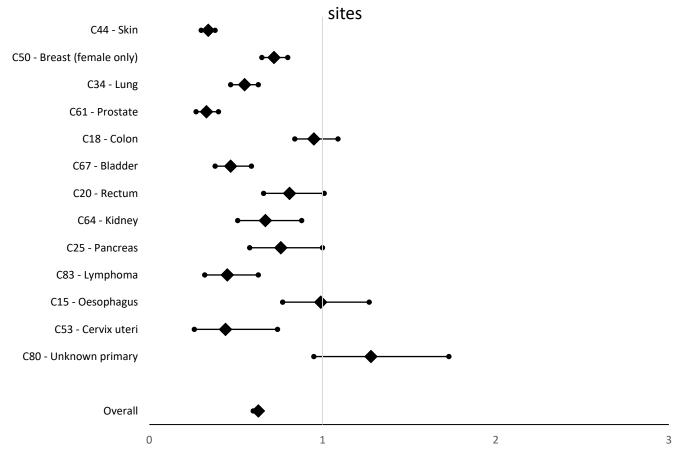

0

All analyses adjusted for age and sex

Findings – Most common sites

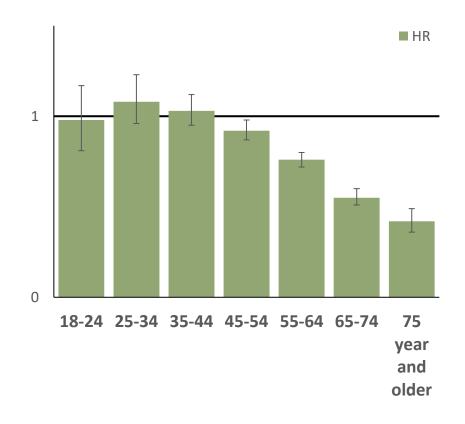
Stratified by residency status in long-term care (i.e. proxy for ID severity)

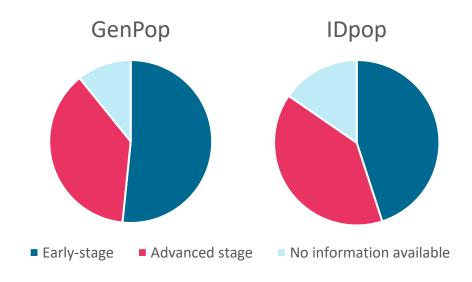
Non-residential care ID population odds ratios for most common



Findings – Most common sites

Stratified by residency status in long-term care (i.e. proxy for ID severity)


Residential care ID population odds ratios for most common cancer



Radboudumc

Findings – Age and stageing

Mean age at diagnosis 67,9 (13,0) vs 58,3 (12,7)

Discussion

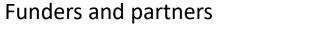
- Different incidence, at different age, and different sites
- High risk for cancer of unknown primary
 - Indicative for late diagnoses?
- Low risk for skin cancer
 - Underdiagnosis or truly lower risks?
- Lower risks particularly in residential care
- Contributing lifestyle factors outside residential care?
 - Lung, pancreas, oesophaegal

Methodological take-aways

- Large sample and long follow-up preferable
- Be aware of subgroups within the ID population
- Take demograpic differences between both population into account (matched sample or adjust analyses for age and sex)
- Better information on ID aetiology is needed

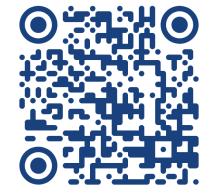
Radboudumc

21 Image: skschools.org 1 november 2024


Thank you for your attention

Collaborators

Jenneken Naaldenberg, Geraline Leusink, Lynette Oost, Amina Banda, Haiko Bloemendal


Contact

Maarten Cuypers, PhD Maarten.Cuypers@radboudumc.nl

22 1 november 2024